Blogs

HogarBlogMoldeo por inyección de nailon: Diseño, Proceso, y guía de materiales para ingenieros

Moldeo por inyección de nailon: Diseño, Proceso, y guía de materiales para ingenieros

Nylon Injection Molding

¿Qué es el moldeo por inyección de nailon??

¿Qué es el moldeo por inyección de nailon?

¿Qué es el moldeo por inyección de nailon?

Nylon injection molding is a manufacturing process that uses molten nylon — a type of engineering thermoplastic — to produce durable, ligero, and high-strength components. Nylon, también conocido como poliamida (Pensilvania), is a semi-crystalline polymer characterized by excellent mechanical strength, resistencia al desgaste, and chemical stability.

Debido a su high crystallinity, nylon exhibits superior toughness, resistencia a la fatiga, and thermal performance. It can withstand demanding environments and often replaces metal in applications such as engranajes, sujetadores, cable ties, fan blades, y piezas de bomba.

The most common nylons used in injection molding include:

Nylon 6 (PA6)

Nylon 66 (PA66)

Nylon 12 (PA12)

Glass-fiber reinforced nylon (PA-GF)

Each grade has distinct mechanical and processing characteristics, allowing engineers to balance fortaleza, flexibilidad, and moisture resistance for specific end uses.

Advantages of Nylon Injection Molding

Nylon is one of the most popular engineering plastics for moldeo por inyección because it combines capacidad de moldeo, actuación, y rentabilidad. Below are its major benefits explained in detail.

1. Low Melt Viscosity

Nylon melts easily and flows smoothly within the mold, even through thin sections or complex geometries.

Enables the production of piezas de paredes delgadas (as low as 0.7 milímetros).

Reduces injection pressure and ensures complete mold filling.

Shortens cycle times for high-volume production.

2. Excellent Chemical and Abrasion Resistance

Nylon resists a wide range of chemicals, incluido:

Dilute acids and alkaline solutions

Hydrocarbons, combustibles, and oils

Organic solvents like alcohols and halogenated hydrocarbons

Es bajo coeficiente de fricción and high wear resistance make it ideal for parts that experience sliding or rotational motion, como engranajes, casquillos, y rodamientos.

3. Resistencia a alta temperatura

Nylon maintains mechanical integrity at elevated temperatures.

Standard nylon grades can operate continuously up to 120–150°C.

Glass-filled nylons withstand even higher temperatures before softening.
This property makes nylon suitable for automotive engine compartments and industrial machinery.

4. Fatigue and Impact Resistance

Nylon’s semi-crystalline molecular structure gives it excellent resistencia a la fatiga, allowing it to endure repeated stress cycles without cracking or breaking.
Designing parts with generous corner radii further improves performance under cyclic loads.

5. Mechanical Strength Comparable to Metal

Nylon exhibits high tensile and flexural strength, enabling it to replace metal in many load-bearing applications.
Reinforcing nylon with glass fibers or mineral fillers increases rigidity and dimensional stability while reducing creep under load.

Nylon Injection Molding Design Guidelines

Proper part design ensures both precisión dimensional y eficiencia de producción. Below are nylon-specific design considerations.

1. Espesor de la pared

Recommended: 0.030–0.115 in (0.76–2.92 mm)

Mantener uniform wall thickness to prevent sink marks and warping.

Gradual transitions (≤15%) between adjacent walls are ideal.

Avoid walls thicker than 6 milímetros, as they increase cooling time and may trap voids.

Nylon’s low melt viscosity allows thinner walls than many other thermoplastics while maintaining part strength.

2. Radii and Corners

Avoid sharp corners that create stress concentrations.

Minimum radius: 0.5 milímetros.

Optimal radius: ≈75% of nominal wall thickness for best fatigue performance.

3. ángulos de tiro

Nylon’s smooth surface and low friction allow for minimal draft.

0.5°–1° per side is recommended to ease ejection and shorten cycle times.

Superficies planas (p.ej., engranajes) can sometimes be molded with no draft.

4. Part Tolerances

Nylon has a higher shrinkage rate (0.5%–2%) than many plastics, making dimensional control challenging.

Accurate mold temperature management reduces variation.

Glass-filled grades exhibit lower shrinkage and improved stability.

Controlled moisture conditioning post-molding ensures long-term precision.

Nylon Material Properties

Nylon Material Properties

Nylon Material Properties

The following are typical material properties for several nylon grades:

Propiedad Nylon 11 Nylon 12 Nylon 46 Nylon 66 Nylon 66 30% novia
Densidad (gramos/cm³) 1.04 1.31 1.20 1.17 1.38
Linear Shrinkage (cm/cm) 0.0083 0.0069 0.019 0.0139 0.0044
Rockwell Hardness (R) 107 98 95 114 117
Resistencia a la tracción (MPa) 37.1 46.1 73.9 72.5 155
Alargamiento en rotura (%) 119 67 43 47 4
Flexural Modulus (GPa) 0.95 5.66 2.64 3.09 7.96
Drying Temperature (°C) 90 93 94 81 82
Temperatura de fusión (°C) 261 224 303 279 285
Mold Temperature (°C) 49 71 103 75 86

Para llevar: Nylon’s balance of alta resistencia a la tracción, dureza, y flexibilidad makes it ideal for load-bearing components. Sin embargo, Debido a su hygroscopic nature, nylon must be dried thoroughly Antes de procesar.

Nylon Injection Molding Process Parameters

Controlling processing parameters ensures consistent part quality and dimensional accuracy.

1. Viscosity

Nylon has low melt viscosity, enabling fast mold filling through thin or intricate channels.

This reduces cycle times but requires careful pressure and speed control to prevent flashing.

2. Moisture Control

Nylon easily absorbs atmospheric moisture.

Excessive moisture causes vacío, splay, and brittleness.

Optimal moisture content: 0.15–0.20%.

Dry nylon at 80–90°C for 3–6 hours before molding.

3. Temperature Control

Higher mold temperature → increased crystallinity and strength.

Too high (arriba 330°C) → risk of thermal degradation and discoloration.

Typical processing range:

Barrel temperature: 260–290°C

Mold temperature: 70–90°C

4. Injection Pressure

Typical range: 700–1400 bar (10,000–20,000 psi).

Low pressure → short shots, knit lines, Mal acabado superficial.

High pressure → flash, warpage, or dimensional distortion.
Proper pressure profiling ensures uniform density and minimal internal stress.

5. Injection Speed

High injection speeds reduce cycle time and weld lines.

Sin embargo, excessive speed can cause shear heating y quemaduras.

Controlled ramp-up of speed is best for thin-walled nylon parts.

6. Gassing and Venting

Nylon molding generates gases during melt injection.

Poor venting causes vacío, burns, and incomplete filling.

Provide vent depths around 0.02–0.04 mm near cavity edges.

7. Contracción

Typical range: 0.5–2%, depending on grade and cooling rate.

Controlled by:

Higher mold temperatures (reduce shrinkage).

Uniform wall thickness.

Glass reinforcement (minimizes warping).

Common Nylon Injection Molding Defects and Solutions

Defecto Possible Cause Recommended Solution
Splay marks Excess moisture Pre-dry material properly
Flashing Excess pressure or low clamp force Adjust injection pressure, inspect mold fit
Pandeo Uneven cooling or wall thickness Optimize mold design and cooling layout
Short shots Low injection speed or venting issue Increase speed, Mejorar la ventilación
Discoloration Overheating or degradation Lower melt temperature, ensure material purity

Applications of Nylon Injection Molding

Nylon molded parts are used across numerous industries due to their combination of fortaleza, tenacidad, y resistencia al calor.

Automotor: Engranajes, casquillos, radiator fans, fuel line connectors

Eléctrico & Electrónica: Cable ties, aisladores, terminal housings

Bienes de consumo: Power tool housings, appliance components

Equipo industrial: Aspectos, rodillos, mechanical fasteners

Aeroespacial: Lightweight interior fittings, soportes, clips

Best Practices for Successful Nylon Injection Molding

Store nylon pellets in airtight containers to prevent moisture absorption.

Siempre dry material before molding.

Mantener uniform cooling to minimize warping.

Usar glass-filled grades for high-strength or precision applications.

Aplicar controlled temperature and pressure profiles during molding.

Conclusión

Nylon injection molding combines the strength of engineering plastics with the versatility of thermoplastics. When processed correctly, nylon delivers exceptional performance, durabilidad, y precisión, making it a preferred material for both industrial and consumer applications.

Proper control of humedad, temperatura, and pressure, along with intelligent design practices, ensures high-quality nylon parts that can even replace metal components.

Preguntas frecuentes

  1. What is the best type of nylon for injection molding?
    Nylon 6 y nylon 66 are the most commonly used types. Nylon 66 offers higher strength and temperature resistance, while Nylon 6 provides better surface finish and flexibility.
  2. Why must nylon be dried before injection molding?
    Because nylon is hygroscopic, it absorbs moisture from the air. Moisture in the resin can cause bubbles, splay, and degradation during molding.
  3. Can nylon replace metal parts in mechanical assemblies?
    Sí. With glass-fiber reinforcement, nylon can achieve tensile strength comparable to aluminum, making it a cost-effective lightweight alternative.
  4. What are the common challenges when molding nylon?
    Key challenges include moisture absorption, contracción, pandeo, and maintaining tight tolerances due to high shrinkage rates.
  5. How do you reduce shrinkage in nylon injection molding?
    Use higher mold temperatures, uniform wall thickness, and glass-filled grades. Controlled cooling also helps prevent warpage.

Leer más:

Consejos para diseñar clips para piezas de plástico

5 Cosas que necesita saber sobre el moldeo por inyección de plástico

Todo sobre los conceptos básicos del moldeo por inyección de plástico

Todo lo que necesita saber sobre el moldeo por inyección de policarbonato?

Cargando

Diseño de ángulo de tiro
Publicación anterior

Guía de diseño de ángulos de tiro & Mejores prácticas: Cómo diseñar para una mejor liberación del molde

Siguiente publicación

Pasadores eyectores y sus usos en el proceso de moldeo por inyección

Pasadores eyectores

1 pensamiento en “Moldeo por inyección de nailon: Diseño, Proceso, y guía de materiales para ingenieros

Deja una respuesta

su dirección de correo electrónico no será publicada. Los campos obligatorios están marcados *

Let's Start A New Project Today

Envíe su consulta hoy

    Comienza a escribir para ver las publicaciones que estás buscando.